

Ponce De Leon Center

Visual Condition Assessment 341 Ponce De Leon Avenue NE Atlanta, Georgia

July 28, 2025 WJE No. 2025.1974

PREPARED FOR:

Thomas Doenitz Vice President Design and Construction Grady Health Systems 80 Jesse Hill Jr. Drive SE Atlanta, Georgia

PREPARED BY:

Wiss, Janney, Elstner Associates, Inc. 2055 Sugarloaf Circle, Suite 250 Duluth, Georgia 30097 770.923.9822 tel

Ponce De Leon Center

Visual Condition Assessment

341 Ponce De Leon Avenue NE Atlanta, Georgia

Nathan Reynolds, PE Associate Principal Krysten Pazik Associate III

Krysten Pazik

Cooper Banks Associate II

July 28, 2025 WJE No. 2025.1974

PREPARED FOR:

Thomas Doenitz Vice President Design and Construction Grady Health Systems 80 Jesse Hill Jr. Drive SE Atlanta, Georgia

PREPARED BY:

Wiss, Janney, Elstner Associates, Inc. 2055 Sugarloaf Circle, Suite 250 Duluth, Georgia 30097 770.923.9822 tel

CONTENTS

Introduction	1
Building Description	1
Background	2
Limited Visual Assessment	2
Interior Visual Survey	2
Exterior Visual Survey	3
Brick Masonry	3
Limestone	4
EIFS	5
Main Entrance Claddings	6
Windows	6
Roofing Membrane	6
Discussion and Conclusions	7
Brick Masonry	7
Limestone	9
EIFS	11
Main Entrance Cladding	11
Windows	11
Roofing	12
Recommendations	13
Facade Systems	13
Roofing	
Closing	15
Figures	16
Appendix A	

INTRODUCTION

At the request of Hammes Healthcare (Hammes), Wiss, Janney, Elstner Associates Inc. (WJE) completed a limited visual assessment of the facade at the Ponce De Leon Center located at 341 Ponce De Leon Avenue NE in Atlanta, Georgia. The purpose of the visual assessment was to evaluate the existing condition of the facade and provide general repair and/or maintenance recommendations for the building facade systems to be incorporated during the planned facade maintenance project.

BUILDING DESCRIPTION

The Ponce De Leon Center was originally constructed in 1966 as the headquarters for the Presbyterian Center, located at the corner of Ponce De Leon Avenue and Hunt Street. The building was acquired by Grady Health Systems (GHS) in 1986 and renovated to a medical center. Additional renovations, including reconfiguration of interior spaces, construction of a new elevator tower, and a roof replacement, were completed in 2021.

The building is a seven-story, concrete framed structure with a central five story tower, two-story wings at the east, west, and south facades, and an 'L' shaped mechanical penthouse at the main roof level. The building is primarily accessed through the main entrance at the south wing, an employee entrance at the east facade, and a loading dock at the south facade. Additional entrances are located near the center of the north facade, through the ambulance bay at the southeast corner, and from a partially below grade courtyard between the east and south wings. A concrete sidewalk abuts the exterior walls around much of the building perimeter. Cantilevered, concrete framed projecting roof areas cover the north facade building entrance and the loading dock at the southwest building corner. A portico covers the east facade employee entrance. Parking lot areas are located on the east, south, and west portions of the building, with a drive aisle along the north facade. Figure 1 illustrates an overall plan view of the property.

The exterior walls at the east, south, and west facades are primarily clad with clay brick masonry laid in running bond; the north facade is clad with a combination of brick veneer and limestone panels. Aluminum framed window assemblies are set in punched window openings throughout each facade. Cast stone window sills are located at window openings in the brick masonry. A limestone clad steeple projects from the south wing. Based on a limited review of the available construction documents from the 2021 renovations, the south facade of the main entrance is clad with porcelain tiles and phenolic panels¹, and an elevator tower clad with exterior insulation and finish system (EIFS) is located at the west facade. Additional areas of the facade at the mechanical penthouse were reclad with EIFS during the 2021 renovation. Figure 2 and Figure 3 illustrate representative building facades.

The roof areas, including mechanical penthouses, are covered with a white, single-ply, thermoplastic polyolefin (TPO) roof membrane with internal roof drains. With the exception of the elevator tower at the west facade, multi-wythe masonry parapet walls capped with cast stone coping units surround each of the roof areas.

¹ Phenolic panels, also known as high pressure panels, are laminate panels formed by heating and pressing resinimpregnated paper layers.

BACKGROUND

On-going water leakage has been reported throughout the building facade, generally limited to portions of the exterior wall surrounding window systems. GHS and Hammes are currently planning a facade maintenance project, including a window repair/replacement project. However, prior to proceeding with a facade restoration project, GHS requested an assessment of the facade be completed to determine whether additional repair or maintenance items should be incorporated into the facade project. This assessment was performed in accordance with Task Nos. 1 and 2 of WJE's proposal dated April 7, 2025; Task No. 3, including water leakage testing and exploratory openings, was omitted from this limited assessment.

LIMITED VISUAL ASSESSMENT

The limited condition assessment was completed by Nathan Reynolds, Krysten Pazik, and Cooper Banks, of WJE, on June 4 and 5, 2025. The assessment consisted of an exterior visual survey, an interior visual survey of representative areas, and a non-destructive evaluation of the roof systems.

Interior Visual Survey

An interior visual survey of the exterior walls was performed at representative, accessible portions of the building. During the interior survey, representatives of GHS and Hammes escorted WJE throughout the interior spaces and identified areas of on-going and/or previous water leakage. The areas accessed as part of the interior survey are illustrated on plans included as Appendix A. The purpose of this survey was to observe and document evidence of potential water leakage through the building envelope systems. The following summarizes the conditions observed.

- White staining (Figure 4) and separated/peeling interior finishes (Figure 5) at window perimeters, frame joints, or on stool trim elements was noted at most building windows observed during the visit. The most significant staining and distressed finishes typically occurred in the stairwell windows (Figure 6).
- The interior finish was peeling at the northwest corner of Office 6022 (Figure 7 through Figure 9), adjacent to a window and immediately below the northwest corner of the main roof.
- Interior finishes were bubbled and peeling adjacent to the storefront assembly at the north building entrance (Figure 10), immediately below the low roof to building wall transition termination.
- The interior coating was peeling and/or discolored at the soffit return above the ambulance bay entrance doors, located at the east facade of the east wing (Figure 11 and Figure 12).
- The window stool was missing from Level 6 east stairwell window, exposing metal lath extending from plaster finishes and inside surface of the brick backup wall. Staining was noted along the base of the window frame (Figure 13).
- At two east stairwell windows, daylight was visible between the window head-jamb corner and the interior finishes (Figure 14).
- Most window units were fastened closed (Figure 15); building staff reported all windows on the second floor and above were fastened closed for safety purposes. However, the operable top sashes

were reportedly unable to be fully closed at two locations: Office 1033 and Group Room 6041 (Figure 16).

- Several fogged insulated glass units (IGUs) were observed throughout the visual survey (Figure 17). A
 1993 date stamp was noted on the aluminum spacer within the IGUs throughout the building.
- Water-stained ceiling tiles were observed in the Infusion Hallway (Area 128), located at the first floor of the east wing. WJE accessed the interstitial space above the stained ceiling tiles and observed a pipe sleeve containing numerous abandoned conduits (Figure 18 and Figure 19), located beneath a rooftop mechanical unit.
- Previous interior water leakage was reported at the southeast corner of Office P108 (Figure 20), located below grade in the east wing; the south wall of Office P108 is shared with a below grade vault.
 - Per conversation with building personnel, a new downspout and sealant were installed at grade above the corner experiencing water leakage and a sump pump was installed within the vault to remove standing water. No additional water leakage has been reported since these repairs were performed.

Exterior Visual Survey

WJE performed the exterior visual survey and documented existing conditions from grade, accessible roof areas, and utilizing a small, unmanned aircraft (sUAS or drone) to obtain overall and close-up photos of the building facade systems. In addition, WJE utilized an electrical capacitance meter to evaluate representative portions of the roof assembly. No destructive evaluation or testing was performed to supplement the findings of the visual survey or non-destructive testing. The following summarizes the conditions observed.

Brick Masonry

- The masonry wall assembly consists of brick veneer, a two-inch wide drainage cavity, and dampproofing applied to a brick masonry backup wall (Figure 21 and Figure 22).
- No horizontal or vertical expansion joints were observed in the masonry veneer throughout the building.
- Full height vertical cracks, generally 15 mils or less, extend through both mortar joints and brick units, at outside corners throughout the building (Figure 23).
- Stair-stepped cracks through mortar joints extend to building corners at numerous locations, including at the parapet wall above Level 7 on the southeast corner (Figure 24) and from the parapet wall transition at the south end of the east and west mechanical penthouse facades (Figure 25).
- At the stair-stepped crack at the parapet wall at the southeast corner, as shown in Figure 24, the brick above the crack was displaced approximately 1/4-inch. No immediate safety concerns were noted at the brick at this location.
- Numerous colors, textures, and finishes, consistent with previous repointing efforts (Figure 26) were noted in the mortar joints throughout the building. Bond separations (Figure 27), transverse cracks through the mortar (Figure 28) and areas of missing mortar were observed at many of these locations (Figure 29).

- At areas of missing mortar, half-moon profiles, measuring approximately 1/4-inch deep were observed in the head joints (Figure 30).
- Areas of eroded mortar and discolored brick masonry were noted near the ground level of the north facade (Figure 31 and Figure 32); building staff reported planters had been removed from these locations.
- Sealant was observed in the bed joints aligned with window heads throughout each facade; rope weeps extended through the sealant at varying spacing, generally between 32 and 48 inches at these locations (Figure 33). No weeps were observed at building transitions or base of wall conditions.
- Discoloration or staining of the sealant and adhesive or cohesive sealant failures were noted throughout the building, including adjacent to stepped cracks (Figure 34), along bed joints aligned with the window heads, and along the base of wall construction at the north facade (Figure 35).
- Light surface corrosion was identified on the underside of the steel angles spanning over window heads (Figure 36).
- Isolated missing or damaged brick units, abandoned penetrations through brick, and abandoned fasteners were observed throughout the property (Figure 37 through Figure 40).
- At the south facade of the east wing, a coating had been applied to the brick face below the Level 2 floor line (Figure 41 and Figure 42).

Limestone

- Half-moon cracks or spalls were observed at panel edges at approximately five percent of the limestone panels; at several locations, corner chips or spalls extended from these cracks (Figure 43 and Figure 44).
- Cracks, varying in width from hairline up to approximately 15 mils, were noted in 'L' shaped panels, such as the mechanical penthouse to parapet wall transition (Figure 45) and at the east wing employee entrance (Figure 46).
- Isolated hairline, up to 20 mil cracks, were noted throughout the limestone cladding, generally located on the ground level at building corners, high traffic locations, or immediately adjacent to drive aisles (Figure 47 and Figure 48).
- Shallow surface spalls, chips, and/or localized damage in the limestone panels were noted throughout the facade (Figure 49 and Figure 50).
- Four cracks, measuring approximately 15 to 50 mils wide and varying between vertical and diagonal were noted in the limestone clad steeple at the south facade (Figure 51).
- Several incipient spalls were observed throughout the north facade, including a window sill and decorative infill panels at the penthouse level above the north entrance (Figure 52). The edges of the incipient spalls were adhered with joint sealant between existing elements; the joint sealant was intact at the time of WJE's visit.
- Varying levels of atmospheric soiling were noted at the limestone panels throughout the facade.

- Throughout the facade, an approximately 2-inch-wide perimeter of the panels were lighter in color than the field of the limestone panel (Figure 53). This condition was most notable at the mechanical penthouse.
- A green colored discoloration was present below areas of exposed copper flashing at the east and west facades of the mechanical penthouse (Figure 54). No discoloration was present at the 2-inchwide perimeter of the panel joints.
- Uneven panel discoloration and narrow areas of discoloration or etching of the face of the panels was noted at several of the limestone panels accessible from grade (Figure 55).
- Similar to the brick masonry, discolored panels were noted near the ground level of the north facade at a location where planters had been removed.
- At the west end of the north facade, the lower 12 to 36 inches of panels in contact with or extending below the concrete sidewalk were discolored (Figure 56).
- The sealant had failed adhesively and/or was missing at limestone panel joints throughout the building (Figure 57 and Figure 58).
- Similar to the brick masonry, sealant was installed between the wall panels and concrete sidewalk was failed adhesively, cohesively, and/or missing throughout the building perimeter (Figure 59 and Figure 60). Weep tubes were observed through the sealant at the limestone panels remaining beneath the porcelain panels at the main entrance (Figure 61).
- Sealant installed between the concrete knee wall and limestone panels adjacent to the east employee entrance, at the location reportedly installed to address water leakage into Office P108, was adhesively failed (Figure 62 and Figure 63).
- Similar to the brick masonry, abandoned penetrations through the limestone and abandoned fasteners were observed at numerous wall panels and coping units throughout the building (Figure 64 through Figure 66).
 - Cracks and/or shallow surface spalls were noted at locations where fasteners located within 1 inch of the panel or coping stone edges (Figure 67 and Figure 68).

EIFS

- The EIFS cladding at the west facade elevator tower and mechanical penthouse walls was generally observed to be free of cracking or staining in the field of the wall (Figure 69 and Figure 70).
- An isolated area of impact damage, measuring less than 4 square inches, was noted at the base of the mechanical penthouse (Figure 71).
- An open, unsealed joint was observed in the sheet metal expansion joint cover at the transition from the elevator tower to the main roof area (Figure 72). The underlying expansion joint material was concealed and inaccessible.
- An area of exposed EIFS mesh and insulation was noted adjacent to an abandoned Unistrut channel at the west wing low roof at the elevator tower (Figure 73 and Figure 74).
- Several unsealed joints or penetrations were noted at the mechanical penthouse walls (Figure 75 and Figure 76).

Main Entrance Claddings

- The majority of the main entrance cladding appears to be adhered porcelain tiles. No delaminations or displacement of the main entrance porcelain tiles were observed (Figure 77).
- Cracked mortar was identified at isolated tile joints (Figure 78).
- White staining, consistent with efflorescence, was emanating from the sealant joints (Figure 79 and Figure 80).
- Metal flashing daylighted at the bottom of the porcelain tile cladding, located one limestone panel course above grade (Figure 81).

Windows

- The anodized coating on the window frame coating was weathered and/or faded (Figure 82).
- Window perimeter sealants throughout the majority of the facade were green-colored; these sealants were generally weathered, crazed, and/or failed adhesively (Figure 83).
- At the courtyard, the window perimeter sealants were gray-colored sealant; no significant weathering
 or sealant failures were observed at the gray-colored sealants (Figure 84).
 - Drip edge flashing was fastened to the each of the courtyard window frame heads. Similar gray sealant was installed along the leading edge of the face fastened drip edge (Figure 85).
 - At the courtyard west facade window units (four in total), sealant was also installed along the exposed lintel (Figure 86).
 - Adhesive and cohesive failures were identified at these sealant applications (Figure 87).
- The glazing gaskets were cracked, shrunken, and/or had portions missing at isolated ground floor units (Figure 88).
- Building personnel reported one window unit at the tower east facade was open; this window was not accessible, as the unit was currently concealed by interior wall finishes. From the exterior, the upper sash was down, and the interior wall framing/finishes were visible at the top of the opening (Figure 89).
- At the north facade of the east wing, one broken lite was covered with a foam panel (Figure 90 and Figure 91).
- Sealant was applied to the glazing to metal joints at three ground floor window units at the north facade (Figure 92).
- Isolated lites at the north facade ground floor had been replaced with acrylic panels. Most of these panels were able to be displaced with hand pressure (Figure 93).

Roofing Membrane

- The main roof and low roof areas included primary and secondary, or overflow, internal roof drains (Figure 94). No secondary drainage provisions, such as overflow drains, were not located on the high roofs above the mechanical penthouse.
- Ponding water was observed at the western half of the main roof and east low roof; the ponding water was concentrated around obstructed primary roof drains (Figure 95 through Figure 97). The

- ponding water was below the level of the secondary or overflow drains. WJE removed debris from the drain strainer at the primary drain during the visit and water drained from the roof at these locations.
- Ponding water observed at the north entrance canopy was concentrated at the gutters that drain to the interior downspouts (Figure 98). This roof area was not accessible during the visual survey.
- Isolated punctures and/or scratches or cuts through the membrane were noted at the main and low roof areas (Figure 99 and Figure 100). These conditions were generally located adjacent to rooftop mechanical equipment and/or high traffic areas. High readings, consistent with wet insulation, were identified by the electrical capacitance survey at these locations.
- High readings, consistent with wet insulation, were also identified by the electrical capacitance survey at several blisters, ranging in size from less than 1 square foot up to approximately 6 square feet, and adjacent to membrane laps (Figure 101), coping transitions (Figure 102), and crickets (Figure 103).
- The TPO roofing membrane was terminated at the interior face of the parapet. The roof counterflashing was sealed to the face of the brick masonry parapet wall (Figure 104). At most locations where the termination was one course or more below the coping stone, the interior brick face was coated (Figure 105). Roof termination flashings at rooftop mechanical units, curbs, and/or pipe penetrations were generally sealed; isolated adhesive sealant failures were noted at these locations (Figure 106).
- At the mechanical penthouse roof, the curb height varied from approximately 4 inches to flush with the roof surface (Figure 107).
- At the east wing low roof area, directly above the identified stained ceiling tiles at the Infusion Hallway, the TPO membrane was terminated onto a rooftop mechanical system (Figure 108 and Figure 109).
 - Within the mechanical unit, condensation/standing water was observed at inaccessible portions of the mechanical system interior (Figure 110). Openings in portions of the mechanical system elevated floor exposed a built-up roof assembly below (Figure 111). Water and pipe penetrations through the built-up roof assembly were observed in the interstitial space between the mechanical system elevated floor and roof assembly below (Figure 112).

DISCUSSION AND CONCLUSIONS

Brick Masonry

Water Management

Brick veneer walls are designed to perform as drainage systems and generally consist of an exterior wythe of brick masonry, a drainage cavity (air space), a water-resistive barrier (WRB), and the interior back-up wall construction. During rain events, the majority of the water will be shed at the exterior surface of the masonry; however, water will also penetrate the brick veneer. Cracks, bond separations, abandoned penetrations, and/or areas of missing brick will increase the potential for bulk water to travel through the assembly. As water enters the assembly, the water will travel down the interior face of the brick veneer and through the drainage cavity, until it reaches interruptions such as window or door openings, steel shelf angles supporting the brick masonry, through-wall penetrations (i.e. vents, plumbing, etc.), roof transitions, or at the base of walls. Through-wall flashing systems are typically integrated with the back-up

wall construction at these interruptions to collect water draining within the cavity and direct it to the exterior through weep systems (which often include tubes, ropes, or vents). Brick ties, mortar droppings, and other debris within the drainage cavity can form bridges from the exterior brick to the back-up wall construction allowing some water to reach the exterior face of the back-up wall.

Based on the conditions observed at open joints at the Ponce De Leon Center, dampproofing material was applied to back-up wall construction, consistent with the 1960s-era construction, rather than a modern day WRB. Although no exploratory openings were created to observe the concealed conditions, the horizontal sealant applied along the bed joints aligned with the window heads, coupled with weep ropes extending through the sealant at many areas, indicates a steel shelf angle anchored to the back-up construction and supporting the brick masonry veneer is likely present at these locations. The presence of sealant along this joint reduces the ability of the wall system to freely drain along the length of the flashing material; the discoloration of the sealant at these horizontal joints is consistent with trapped or restricted drainage at the flashing and migration of asphalt-based materials from the concealed flashing. Through-wall flashings were not observed at base of wall conditions and roof terminations. Failure to provide a drainage path at these terminations can allow water within the assembly to drain to the interior of the building or beneath the roof, respectively. Although widespread water leakage has not been reported throughout the field of the masonry wall areas, water staining, water damage, and reported ongoing water leakage have been identified surrounding numerous window openings and beneath various masonry transitions or terminations. Further investigation, consistent with scope of services included in Task No. 3 – Water Leakage Investigation and Exploratory Openings, is required to evaluate the as-built construction and determine the source(s) of water leakage throughout the building.

Cracking

In addition to conditions related to water management and through-wall flashing systems, numerous cracks and/or previous repair efforts were identified throughout the building. Brick masonry units are manufactured products that are subject to two types of volumetric changes: permanent moisture expansion and cyclical thermal expansion and contraction. As a fired clay product, permanent moisture expansion begins once the brick is removed from the kiln and continues throughout the lifespan of the masonry. Most of the permanent expansion will occur within the first five years after manufacturing and will continue at a decreasing rate over time. Brick also expands and contracts in response to temperature cycles. Modern wall systems typically incorporate horizontal and vertical expansion joints to accommodate these movements. Unaccommodated brick movement, particularly expansion, results in increased stresses in the masonry assemblies, often resulting in cracks through mortar joints and/or brick units, displacement or bulging of wall areas, collapse of masonry veneers, and/or distress in adjacent materials. When these movements span between varying support conditions and/or varying adjoining heights of masonry, vertical and/or stepped cracking often results.

The stair stepped cracking at the Ponce De Leon Center was generally limited to the mortar joints and was observed at portions of the facade with varying heights of brick masonry (i.e. tower facade to the mechanical penthouse transition). At stair stepped cracks not exhibiting out-of-plane displacement, the tower facade is subject to an accumulation of moisture expansion for the full height of the tower (seven floors) due to a lack of observed horizontal expansion joints. Because the mechanical penthouse is limited to the top floor of the tower, a significant force can be developed at the transition, likely resulting in the

stepped cracks observed. At stair-stepped cracks with out-of-plane displacement, the cracking appears to be related to a lack of vertical expansion joints, creating an increased stress along the length of the wall areas. Exploratory openings should be created at this location to confirm the as-built construction and ensure that no additional sources of cracking or displacement are identified.

In addition to the stair stepped cracking, the vertical cracking at building corners is consistent with a differential support condition and unaccommodated moisture expansion of the brick masonry. Although no exploratory openings were created to confirm the as-built construction, vertical cracking immediately adjacent to outside corners is caused by steel shelf angles not extending to the outside corner of brick masonry veneers and/or unaccommodated moisture expansion. In these cases, the brick masonry at the corner is supported at the ground or lowest level; the remaining brick is supported by the steel shelf angles. Expansion of the brick results in stress concentrations at the edges of the steel angles, resulting in vertical cracks. Exploratory openings should be created at these locations to confirm the as-built construction and ensure that no additional sources of cracking or displacement are identified.

Previous Repair Efforts

To address water leakage, eroded mortar joints, and/or cracked masonry, building owners often undertake repointing efforts to select wall areas or mortar joints. The process of repointing includes removal of mortar to a specified depth and pointing of the joints with a new mortar. Industry standard methods recommend a depth to width profile of 2:1 be achieved for repointing. In a typical masonry veneer construction with 3/8-inch mortar joints, the mortar should be removed to a depth of 3/4-inch. The joints to be repointed should be uniformly prepared to avoid fins, projections, or halfmoons which would result in inconsistent placement of new mortar at these joints. The repointed areas noted during WJE's visual assessment included areas of missing or loose mortar; where the mortar was missing or able to be removed, the original mortar had been removed approximately 1/4-inch from the face of the veneer and halfmoons or incomplete preparation of the joints was noted. Failure to provide a uniform profile often results in failure of the repointing mortar. Areas of failed repointing or eroded mortar should be repointed.

Limestone

Water Management

Similar to the brick masonry, the limestone panel cladding is typically constructed as a drainage assembly. In contrast to the mortar joints at the brick masonry veneer, application of sealant at the panel-to-panel joints significantly reduces the volume of water traveling through the assembly. Although the sealant was weathered throughout the building, open joints and voids were noted through panels at parapet walls, and no through-wall flashings were visible at the limestone panel joints, based on the lack of reported water leakage at the limestone clad wall areas, these assemblies are performing as intended despite the lack of visible flashings. In order to prevent bulk water from entering the drainage cavity, on-going maintenance of the panel sealants should be performed.

The reported previous leakage and repairs at the basement level office, Office P108, indicates that water intrusion was able to be addressed through sealant repairs to the cladding system. Although no leakage investigation was performed or exploratory openings were created, it is likely that deficiencies exist in the

below-grade waterproofing systems at this location; the sealant repairs and downspout installed reduce the volume of water reaching the below-grade conditions at this location.

Cracking

No significant widespread cracking or out of plane displacement was noted throughout the limestone panel cladding; however, numerous cracks and shallow surface spalls were identified. Although no exploratory openings were created to observe the as-built construction, are often supported by steel shelf angles at various floors and laterally secured by split-tail anchors attached to the back-up wall construction set into a kerf cut into the panel edges at the horizontal panel joints. Halfmoon cracks, as noted at numerous locations, are often attributed to stresses developed between these lateral anchors and the stone panels. In order to determine the severity of this condition, it is necessary to determine whether this crack extends through the full depth of the panel or is limited to the exterior face. When these cracks are limited to the exterior face of the stone, the panels remain restrained from outward movement; however, when the interior face of the panel is cracked at the lateral anchors, the panels are subject to outward displacement or falling of the panels. Although no outward displacement was observed, further investigation, including exploratory openings should be performed prior to developing a repair for this condition.

In addition to the halfmoon shaped cracks, two additional types of cracks were noted: horizontal and diagonal cracks at 'L' shaped panels and vertical cracks at the steeple panels. The cracks at the 'L' shaped panels are consistent with stress concentrations in the panels and/or movement of the surrounding cladding elements. Supplemental support and/or replacement of the cracked panels should be considered. In order to assess the cause(s) of the vertical cracking at the steeple, further investigation, including exploratory openings should be performed.

In addition to the cracks identified above, numerous incipient spalls, edge spalls, and shallow surface spalls were noted throughout the building. Stone repairs, including patches, Dutchmen, and/or replacement panels can be considered to address these conditions. Often, in the case of shallow surface spalls or chips, the most appropriate and least invasive repair is to remove loose material and leave the underlying sound stone. Consideration for repair or replacement of edge spalls or full depth spalls to maintain the integrity and reduce the potential of water intrusion through unsealed and open joints or holes in the cladding.

Panel Discoloration and Soiling

Varying levels of atmospheric soiling or rundown staining are present throughout the building at areas at or near grade, subjected to wetting or soil at planters, and beneath copper flashings. Each of these areas should be treated with location specific cleaning methods and chemicals to remove the soiling or stains without damaging the underlying limestone material. Use of high pressure water often results in etching or erosion of the stone materials, resulting in an irregular finish by removing the stained portions of the stone rather than removing the stain from the material. Portions of the limestone at grade along the north facade exhibit damage caused by excessive cleaning methods. In many cases, buildings which have accumulated significant amounts of these types of soiling are not cleaned to a "like new" appearance.

In addition to atmospheric and rundown staining from various cladding or flashing systems (such as asphalt based and/or copper flashings), the limestone panels are susceptible to absorption of oils or

plasticizers from installed sealant materials. The discolored section of stone around the panel edges is consistent with plasticizer migration from sealants previously installed in the panel joints. Removal of this staining is often not possible or cost effective without damaging the stone or surrounding materials.

EIFS

The EIFS cladding installed at the west facade elevator tower and mechanical penthouses is consistent with a EIFS drainage assembly over a concrete masonry unit (CMU) backup wall. This assembly consists of an expanded polystyrene (EPS) board treated with reinforced mesh encased in base coat and a finish coat, creating the EIFS lamina. In some instances, these assemblies also include a fluid applied air and water resistive barrier (AWB) applied over the CMU wall. As with all EIFS assemblies, water is primarily managed at the exterior face of the wall assembly via the reinforced EIFS base coat and sealant joints in the EIFS at expansion joints in the cladding and facade transitions, such as cladding transitions, windows, vents, and other penetrations. Over the years, EIFS with drainage assemblies were developed to incorporate a concealed AWB, as well as through-wall flashings to integrate drainage provisions within the wall assemblies to provide redundancy if the EIFS lamina and/or sealants were to fail. In an EIFS drainage system, bulk water is shed at the EIFS outside face with only incidental water intended to reach the concealed drainage plane. As such, the integrity of the reinforced base coat and sealants is vital to maintain the water penetration resistance of the assembly by preventing bulk water from entering into the concealed drainage plane. Failures in the EIFS or material transitions, such lamina cracking, failed sealant joints, and/or poorly integrated/detailed wall penetrations, can allow excessive water to enter the drainage cavity and result in water intrusion into the building interior.

During the assessment, WJE identified minimal distressed conditions in the EIFS cladding, including isolated areas of holes/untreated penetrations in field of the wall, exposed reinforcing mesh and insulation, and gaps in the expansion joint cover. The exposed mesh and untreated penetrations conditions compromise the watertight integrity of the EIFS lamina and can allow bulk water to enter the walk cavity. Where the AWB is exposed bulk water, degradation of the AWB can result. To address these conditions, isolated patch repairs can be made at these conditions and should be performed to maintain a watertight barrier at the exterior face of the lamina.

Main Entrance Cladding

The main entrance cladding appears to be an adhered veneer assembly, consisting of porcelain tile with a cementitious bond coat applied over a back-up wall construction. No exploratory openings were created to review the as-built system. However, the white staining between panel joints is consistent with efflorescence of a cementitious bond coat adhering the wall panels to a substrate. Over time, the adhesion of these panels can degrade, due to weathering, accumulation of efflorescence, or other damage to the wall assembly, resulting in failure of the adhered tiles. Continued evaluation including visual assessment and repair of these panels is critical to long term performance of these systems.

Windows

The existing aluminum-framed hung windows installed at The Ponce De Leon Center perform as a barrier assembly. These window systems function by primarily managing water at the window exterior face and directing water that reaches the window assembly interior to the exterior via sloped sill. Bulk water is able

to enter window assembly upon failure of window components, such as glazing gaskets². Additionally, windows also rely on integration of the window with the surrounding cladding to restrict water from entering the wall cavity (i.e. window perimeter sealants) or allowing the water to flash (i.e. window head flashing). Failed window components, failed window perimeter sealants, and absence of window head flashing are all conditions identified throughout the building.

Based on the observed failed interior finishes, accumulation of white staining at jambs, and reported previous repair attempts, including wet sealing of metal-to-metal and metal-to-glass joints at isolated assemblies, previous interior water intrusion has occurred at most windows at the Ponce De Leon Center. Wet sealing is often performed as a cost-effective effort to address internal deficiencies within existing window assemblies in lieu of removing existing face covers to perform repairs to internal components or performing complete replacement of these systems. Installation of the wet seal repairs at select windows converts these systems from a drainage to a barrier system with respect to water management. In a barrier system, all water is managed on the exterior surface of the window systems. This process requires on-going maintenance to replace weathered and failed sealants to allow the system to continue to perform as a barrier.

Based on dates identified on glazer spacers, the existing aluminum-framed window assemblies are approximately thirty-two years old. Window assemblies are typically anticipated to have a service life of 25 to 40 years. Full scale review of the window conditions and functionality was beyond the scope of this assessment; however, based on the previous repair attempts, reported inoperability at isolated units, and widespread failed interior finished, these windows are likely reaching the end of their service life. Further investigation is required to determine the source(s) of the water leakage. This information can provide context regarding the potential of repairing the windows in place, such as converting the assembly from a drainage system to a barrier system via wet sealing, or the appropriateness of a widespread window replacement project.

Additionally, the exterior anodized window coatings were typically weathered or discolored. The service life on exposed anodized coating is approximately 10 to 15 years; as such, the window coatings at the Ponce De Leon Center are well beyond the expected service life. The presence of weathered or discolored anodized coatings on the window assemblies is an aesthetic concern consistent with surface corrosion of the aluminum materials and generally does not affect the water, thermal, or structural performance of the fenestration systems. The discolored coatings are typically addressed via cleaning, prepping, and painting the aluminum frame. The surface preparation for the new coating requires significant effort and still often results in delaminations in the new coating and overall short service lives.

Roofing

The current TPO roof is reportedly approximately four years old. TPO roofs typically have a service life of 15 to 20 years when well maintained. Based on conditions observed from within the rooftop mechanical unit at the low roof, the current TPO roof membrane was a recover installation, indicating the membrane was placed over an older roofing assembly. Roof recovers provide a lower cost option to replace an aged

WJE No. 2025.1974 | July 28, 2025

² Glazing gaskets are installed between the metal frame and glazing to form an airtight and watertight seal along the metal-to-glazing joint.

or failed roofing system while providing the service life anticipated with a new roof system. However, this process requires the underlying roofing assembly (including roof surface and associated insulation material) to remain in a sound, dry condition and that adequate drainage provisions exist. In addition, areas of wet insulation must be removed prior to installation of the new roof covering.

The numerous punctures, cuts, and scratches throughout the roof areas, generally at high traffic areas or adjacent to rooftop mechanical units, provide pathways for water to travel beneath the assembly, reducing the service life and/or resulting in water leakage to the interior. Trapped water within the roof assembly results in blisters, as noted at several locations throughout the roof. At this time, these locations, including areas identified as potentially wet from the non-destructive assessment, are generally small (less than 1 percent of the roof area). However, to confirm the findings of this assessment, exploratory openings should be created to calibrate the findings of the assessment and confirm the areas identified. Following confirmation, to achieve the anticipated service life, maintenance efforts, generally consisting of routine inspections, removal of debris, repair of isolated areas of damage and/or degradation, replacement of sealants, and similar efforts, are required on a regular basis, often twice a year.

RECOMMENDATIONS

The following provides the general repair and maintenance recommendations to be addressed as ongoing maintenance and repair projects to the building. Prior to proceeding with repairs, consideration should be given to evaluating existing materials for hazardous materials, such as asbestos containing materials (ACMs). Note that this report should not be considered specifications for repairs.

Facade Systems

Cladding-specific maintenance and repair efforts should be performed at isolated locations. The following summarizes the recommended repair and maintenance items for each of the facade systems observed.

Immediate Repairs

Remove incipient spalls in limestone panels.

Brick Masonry

- Further investigation or exploratory openings at the weep holes and sealant applied at steel angles to assess the concealed flashings at these locations, at stair-stepped cracks, and at vertical cracks at the building corners.
- Repoint isolated cracked, eroded, or separated mortar joints throughout the facade, including at stairstepped cracking. Given the limited areas of distress, this would likely account for less than 5 percent of the wall areas.
 - Consideration can be given to installing a vertical expansion joint to address brick displacement at stair-stepped cracking locations.
- Replace missing, cracked and/or spalled brick units. Given the limited areas of distress, this would likely account for approximately 5 percent of the wall areas.
- Remove existing sealant installed along window head joints to ensure flashings at lintels are free to drain.
- Remove and patch abandoned anchors in brick units and in mortar joints.

- Install supplemental anchors or modify shelf angle supports at vertical cracks at building corners.
 Further investigation, including exploratory openings, would be required to complete a design for this repair.
- Clean and paint areas of exposed steel, including existing steel lintels.
- Clean existing brick masonry; perform cleaning trials and/or mock-ups to ensure cleaning chemicals and methods do not damage the masonry.

Limestone

- Perform a close-up investigation of the cracked limestone panels at representative locations, to include sounding and exploratory openings, to evaluate the as-built construction techniques, anchorage conditions, panel spalling and cracking,
- Remove and patch abandoned anchors in limestone panels.
- Clean and paint areas of exposed steel, including existing steel lintels.
- Replace and/or infill missing limestone panels, such as at the base of parapet walls.
- Clean existing limestone panels; perform cleaning trials and/or mock-ups to ensure cleaning chemicals and methods do not damage the panels.

EIFS

- Seal wall penetrations and perform targeted patch repairs in EIFS where the reinforcing mesh and insulation are exposed to maintain the watertight integrity of the EIFS assembly.
- Modify/seal the sheet metal expansion joint cover at the elevator tower to main roof transition to provide a watertight joint.
- Continue to maintain sealant joints at floor lines to limit bulk water from entering the EIFS assembly.

Main Entrance Claddings

- Continue to maintain the main entrance phenolic panels and porcelain tiles.
- Clean existing white staining from face of tile; ensure cleaning chemicals and methods do not damage the tile.

Windows

- Consider further investigation, including water testing and exploratory openings, of the window integration and flashing provisions to determine source(s) of reported water leakage. This could be performed in conjunction with the recommended brick and limestone further investigations.
- In lieu of investigation, consideration could also be given to the following repair strategies/options to potentially address the reported water leakage:
 - Replace all window assemblies.
 - Wet seal all metal-to-metal and metal-to-glazing joints at all windows to convert the window assemblies to a barrier system. Remove and replace all window perimeter sealants.
- Consideration could be given to cleaning, preparing, and recoating all pre-finished surfaces of existing window assemblies.

Roofing

The roofing systems throughout the building are in serviceable condition. The following summarizes the recommended repair and maintenance items.

- Consider additional non-destructive evaluation of the roof membranes, including infrared thermography (IR). This can be coupled with roof cores at representative locations to better understand and correlate high capacitance readings and IR results as it relates to roof moisture.
- Perform annual inspections and maintenance to extend the service life of the roof assemblies, this
 includes repair of isolated damage to roofing membranes, removal of debris around roof drains, and
 similar conditions.
- Consider retaining a MEP consultant to investigate water leakage at the east wing mechanical system above the stained ceiling tiles at Level 1.

CLOSING

This assessment was based on visual field observations identified within this report. Our findings and recommendations are based on observations of representative conditions at the Ponce De Leon Center at the time of our assessment. Other conditions may exist, or develop over time, which were not found during our assessment. WJE reserves the right to modify our findings should additional information become available. Our recommendations and/or opinions do not represent a fully developed design or specification for repairs. Based on observations discussed above, we recommend that close-up inspections and inspection openings be performed to review as-built conditions and to further assist with developing repair details. We appreciate the opportunity to work with Hammes on this project. Please feel free to contact us with any questions or discussions you may have.

FIGURES

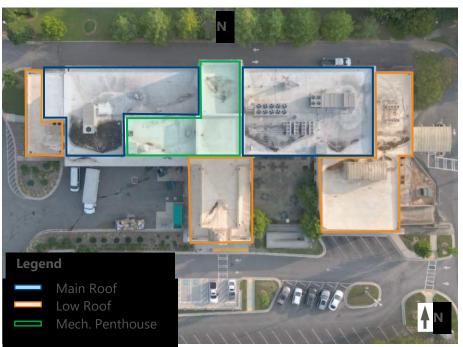


Figure 1. Plan view of the Ponce De Leon Center (photo taken via drone)

Figure 2. Aerial view of the Ponce De Leon Center south facade

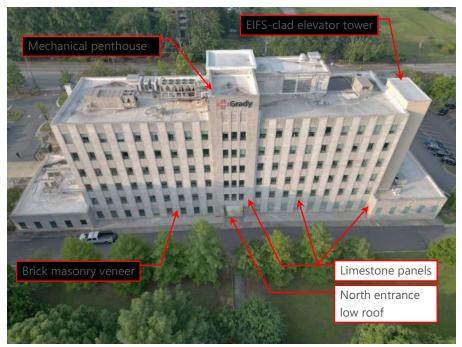


Figure 3. Aerial view of the Ponce De Leon Center north facade

Figure 4. White staining at window frame joint.

Figure 5. Separated and peeling interior finishes adjacent to window.

Figure 6. Stained and separated finishes at stairwell window.

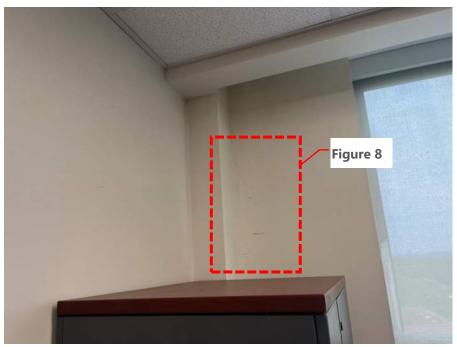


Figure 7. Interior finish coating peeling at northwest corner of Office 6022.

Figure 8. Close-up view of peeling interior finished in Office 6022

Figure 9. Interior finish coating peeling at northwest corner of Office 6022.

Figure 10. Bubbled and peeling interior finishes adjacent to storefront assembly at north building entrance.

Figure 11. Peeling finishes and staining at ambulance bay entrance.

Figure 12. Close-up view of peeling and stained finishes in Figure 11.

Figure 13. Staining along base of window frame (orange arrows) exposing metal lath extending from plaster finishes and inside surface of the brick backup wall (red arrows)

Figure 14. Daylight visible between window head-jamb corner and interior finishes.

Figure 15. Window unit fastened shut.

Figure 16. Visible daylight at window upper sash in Group Room 6041

Figure 17. Fogged IGU at window assembly.



Figure 18. Pipe sleeve (orange arrow) and water staining at concealed roof space.

Figure 19. Water staining surrounding a pipe sleeve with numerous abandoned conduits

Figure 20. Approximate location of previous interior water leakage reported at southeast corner of Office P108.

Figure 21. Stairwell access door to main roof set back from brick masonry face.

Figure 22. Exposed two-inch drainage cavity and dampproofing (orange arrow) applied to brick masonry backup wall.

Figure 23. Vertical cracking at the northeast building corner viewed from the low roof.

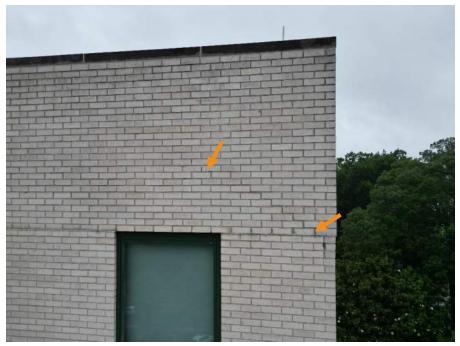


Figure 24. Stair-stepped mortar joint cracking at the main roof southeast building corner.

Figure 25. Areas of loose or missing mortar along stair-stepped cracking at mechanical penthouse.

Figure 26. Location of varying mortar finishes and colors.

Figure 27. Area of mortar joint bond separation.

Figure 28. Transverse cracks in mortar joints.

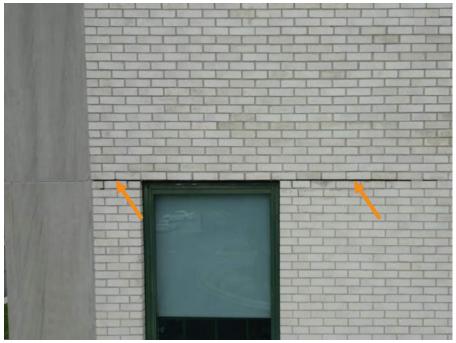


Figure 29. Missing mortar at bed joint level with Level 2 window head.

Figure 30. Saw cuts creating crescent profile in head joint.

Figure 31. Area of eroded mortar and stained brick masonry.

Figure 32. Areas of stained brick masonry at lowest 2 feet along north facade.

Figure 33. Sealant installed at bed joints aligned with window heads.

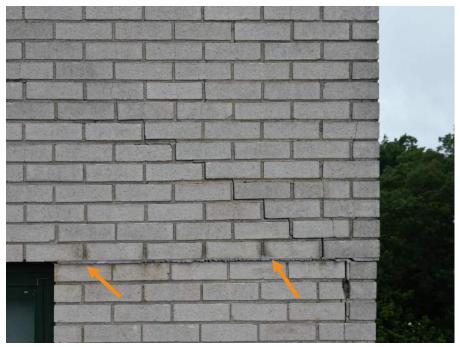


Figure 34. Adhesively and cohesively failed sealant at the bed joint aligned with the window head.

Figure 35. Adhesive failure of sealant installed between brick masonry and grade along north facade.

Figure 36. Light surface corrosion on visible surface of steel angles spanning over window.

Figure 37. Opening in brick at base of low roof parapet wall.

Figure 38. Missing brick units.

Figure 39. Abandoned penetrations through brick units at the north facade, viewed from the main roof.

Figure 40. Mechanical penetration on the north facade at grade.

Figure 41. Coating applied to brick face from Level 2 floor line and below.

Figure 42. Close-up view of white coating applied to east wing south facade

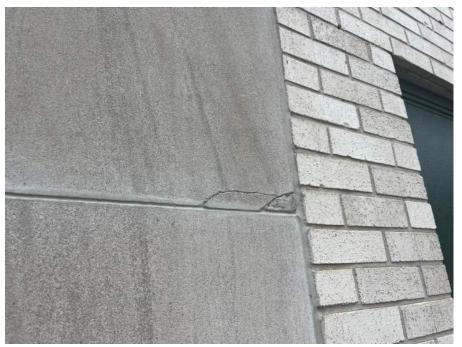


Figure 43. Typical half-moon cracking at panel corners.

Figure 44. Half-moon cracking below the low roof coping.

Figure 45. Cracking in field of L-shaped panels at mechanical penthouse to parapet wall transition.

Figure 46. Cracking in L-shaped panels at east wing employee entrance head-to-jamb reentrant corners.

Figure 47. Panel cracking at northwest outside building corner

Figure 48. Cracking at north facade panel at grade adjacent to the north drive aisle.

Figure 49. Spalling along panel edge.

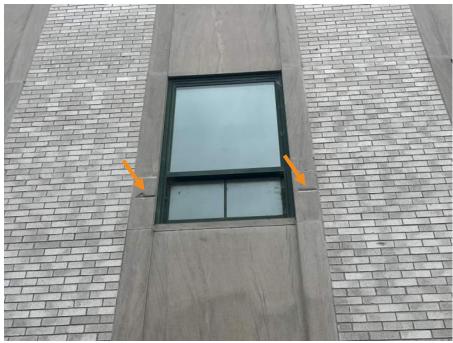


Figure 50. Localized damaged to panels.

Figure 51. Cracking at south facade steeple panel.

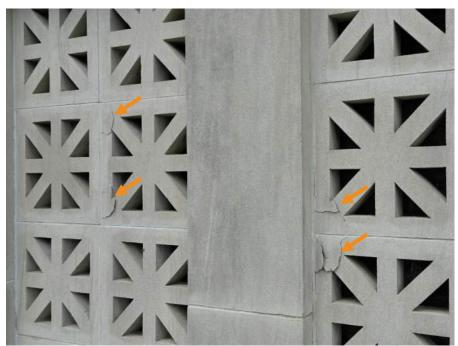


Figure 52. Spalling at corners of decorative infill panels at the main roof level of the north facade.

Figure 53. No staining present approximately 1 to 2 inches from panel joints.

Figure 54. Panels stained green below copper flashing at facade of mechanical penthouse.

Figure 55. Uneven panel discoloration at panels accessible from grade.

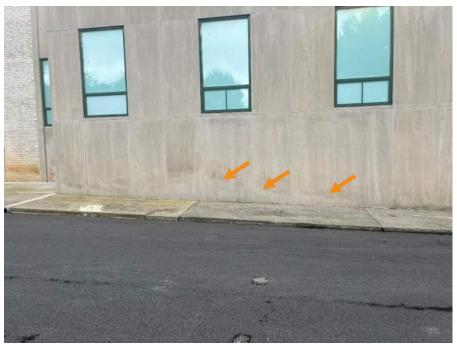


Figure 56. Panels discolored along base of facade at panels extending below grade level.

Figure 57. Adhesively failed sealant at limestone panel joint.

Figure 58. Missing sealant at limestone panel joints.

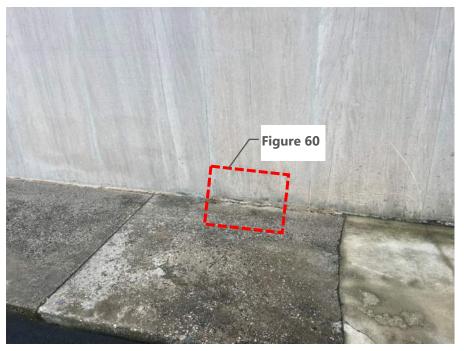


Figure 59. Adhesive and cohesive failure of sealant installed between limestone panels and grade.

Figure 60. Close-up view of adhesive (red arrows) and cohesive (orange arrows) failure of sealant installed between limestone panels and grade.

Figure 61. Sealant with exposed tube weeps installed between the limestone panels and concrete sidewalk at grade.

Figure 62. Downspout and sealant installation adjacent to the east facade employee entrance.

Figure 63. New sealant adhesively failed between the concrete knee wall and limestone panels.

Figure 64. Openings in the limestone panel at the base of roof parapet walls.

Figure 65. Six abandoned anchors at one wall panel at grade on the north facade.

Figure 66. Abandoned anchors in the coping.

Figure 67. Cracking in the coping at lighting protection anchors.

Figure 68. Spalls in the coping at previously installed anchors.

Figure 69. Overview of EIFS at west elevator tower

Figure 70. Overview of EIFS at mechanical penthouse west facade

Figure 71. Isolated impact damage exposing the insulation board and mesh.

Figure 72. Open gap at the flashing joint.

Figure 73. Abandoned Unistrut channel at the west wing low roof.

Figure 74. Abandoned Unistrut channel concealing exposed EIFS mesh and insulation.

Figure 75. Open and unsealed electrical conduit penetrations through EIFS at the east facade.

Figure 76. Missing sealant at the joint between the EIFS and adjacent brick return at the west facade.

Figure 77. Porcelain tiles installed at main building entrance

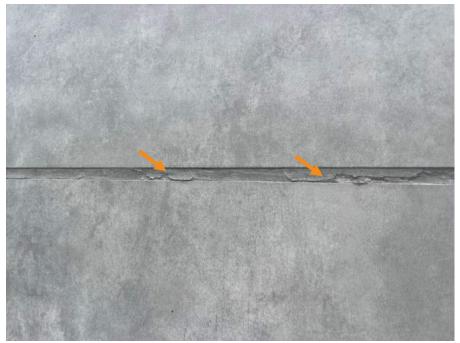


Figure 78. Cracked mortar joints at the main entrance tiles

Figure 79. White staining emanating from the sealant bed joint on the east side of the main entrance.

Figure 80. White staining emanating from the sealant bed joint on the west side of the main entrance.

Figure 81. Flashing daylighted one course above grade.

Figure 82. Weathered window frame coating.

Figure 83. Crazed window perimeter sealant.

Figure 84. Gray-colored window perimeter sealant in the courtyard.

Figure 85. Gray sealant installed along the leading edge of the face fastened drip edge.

Figure 86. Sealant applied along the exposed lintel at a window on the courtyard west facade.

Figure 87. Adhesive and cohesive failures of sealant at a courtyard window.



Figure 88. Missing portion of glazing gasket at north facade ground floor unit

Figure 89. Open window at the east facade.

Figure 90. A foam panel covered a broken lite on the north side of the east wing

Figure 91. Broken lite on the north side of the east wing.

Figure 92. Sealant installed at glazing-to-metal transitions at north facade window

Figure 93. Acrylic panel at north facade ground floor window unit able to be displaced inward

Figure 94. Primary drain (orange arrow) and overflow drain (blue arrow) at main roof

Figure 95. Ponding water at the western half of the main roof and east low roof was concentrated around obstructed roof drains

Figure 96. Ponding water at the western half of the main roof and east low roof was concentrated around obstructed roof drains

Figure 97. Ponding water at the western half of the main roof and east low roof was concentrated around obstructed roof drains

Figure 98. Ponding water on the north entrance canopy.

Figure 99. Punches and scratches on the roof membrane

Figure 100. Punches and scratches on the roof membrane



Figure 101. Isolated blisters at the membrane lap

Figure 102. Isolated blister at the coping transitions

Figure 103. Isolated blisters at crickets

Figure 104. Roof membrane counter flashing termination at the interior face of the brick at the parapet.

Figure 105. Roof membrane counter flashing termination at the interior face of the parapet with coated brick.

Figure 106. Sealant adhesively failed at copper pipes

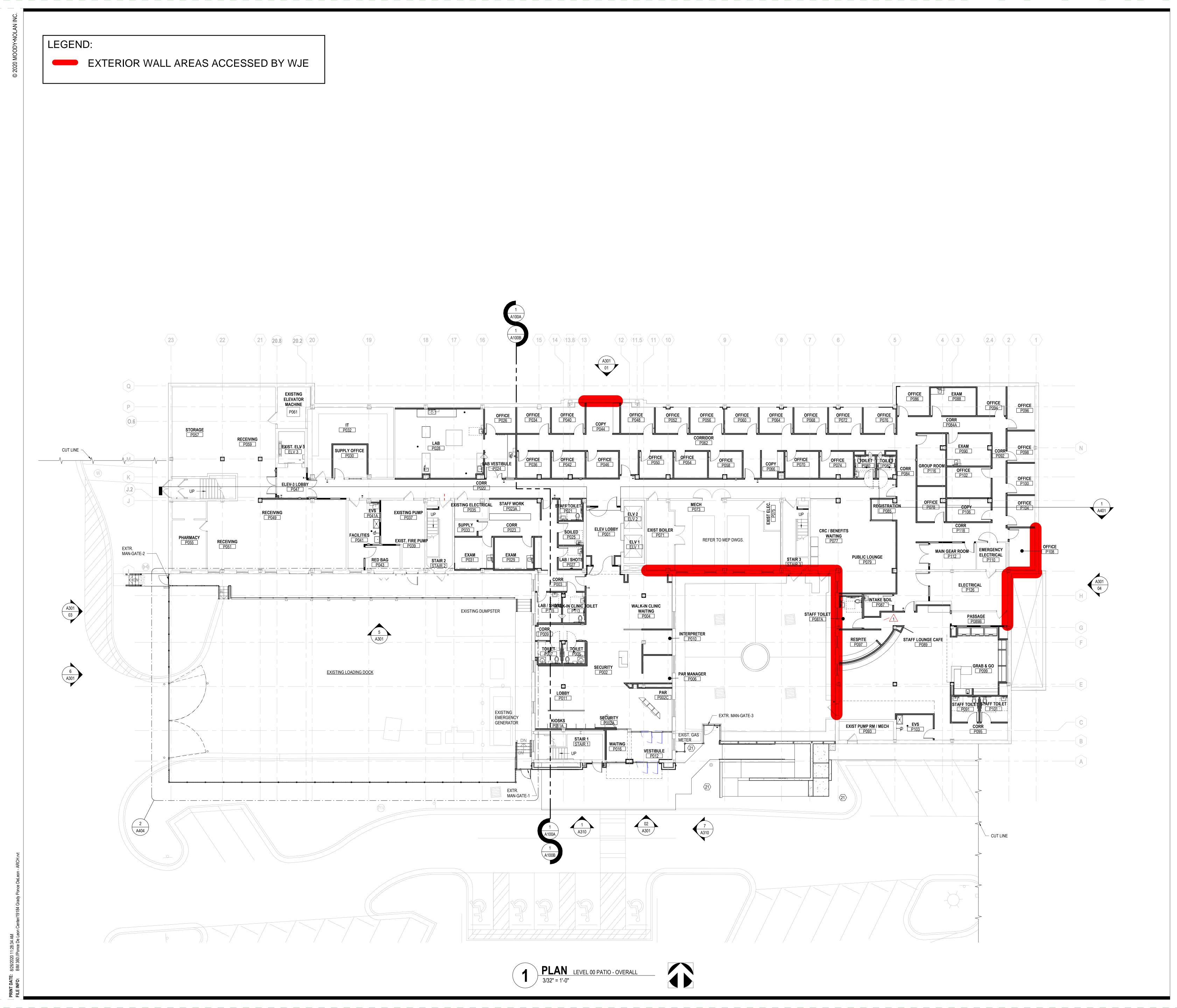
Figure 107. Low curb height on mechanical penthouse roof

Figure 108. Overview of mechanical system at east wing low roof, located above stained ceiling tiles observed at Level 1 ceiling

Figure 109. TPO membrane terminated onto mechanical system curb

Figure 110. Inaccessible area of mechanical system with standing water at floor

Figure 111. Mechanical and plumbing lines extending into the interstitial space between the mechanical system and roof below


Figure 112. View from interstitial space between the mechanical system and roof below, exposing built-up roofing assembly and pipe penetrations below

Ponce De Leon Center

Visual Condition Assessment

APPENDIX A

- A TYPICAL WALL TYPE IS TO BE "3E", U.N.O. REFER TO "AXXX.<u>D</u> SHEETS SERIES. 1 ALSO REFER TO ENLARGED PLANS FOR WALL TYPE CALL-OUTS.
- B. ALL DOORS NOT DIMENSIONED ARE TO BE PLACED 4" FROM ADJACENT WALLS TO EDGE OF FRAME.
- C. ALL DIMENSIONS ARE TO FACE OF WALL (UNLESS NOTED OTHERWISE).
- D. SEE STRUCTURAL DRAWINGS FOR LOCATIONS OF ALL STEEL REINFORCING IN WALL & FLOOR CONSTRUCTION. SEE FINISH SCHEDULE FOR ADDITIONAL INFORMATION OF LOCATIONS AND TYPES OF FINISH MATERIALS. SEE ELEVATIONS AND STRUCTURAL DRAWINGS FOR LOCATIONS OF

EXPANSION & CONTROL JOINTS. CONTRACTOR SHALL PROVIDE ADDITIONAL

INTERIOR CONTROL JOINTS AS REQUIRED TO COMPLY WITH MAXIMUM SPACING REQUIREMENTS IN SPECIFICATIONS AND NATIONAL MASONRY MECHANICAL & ELECTRICAL EQUIPMENT SHALL BE ON HOUSEKEEPING PADS. PADS ARE TO BE PROVIDED BY THE TRADE SUPPLYING THE EQUIPMENT. SEE MECHANICAL AND ELECTRICAL DRAWINGS FOR ADDITIONAL INFORMATION. WORK TO BE COORDINATED THROUGH THE GENERAL TRADES CONTRACTOR.

① CODED NOTE LEGEND

PADS 4" MIN. 4" THICK W/ W.W.F., UNLESS NOTED OTHERWISE).

- ALIGN FINISHED SURFACES. SMOKE GUARD SMOKE SEAL AT ELEVATOR DOOR
- ACOUSTIC RATED WALLS WITH STC RATING OF 60
- 4. REFER TO SHEET A812.1B FOR TYPICAL EXAM ROOM LAYOUT 5. NEW HANDRAILS AND GUARDRAILS TO MEET CODE IN EXISTING
- STAIRWELLS, REFER TO DETAILS ON SHEET A407 CARD READER. 7. COAT HOOK CH-1 (CFCI) BRADLEY STAINLESS STEEL COAT HOOK MODEL
- 9114 INSTALL (1) @ 4'-0" AFF & (1) @ 5'-6" AFF 8. WALL MOUNTED MONITOR (OFCI) PROVIDE FRT BLOCKING IN WALL, TYP.
- 9. SCREEN FENCE REFER TO 2/A404.1B
- 10. VERIFY / PROVIDE ADA CANE DETECTION, REFER TO A800.1B FOR PROJECTING OBJECTS
- 11. WALL MOUNTED PHONE 12. 6-PRONG NAIL HEAD COAT HOOK, SAFECO MODEL #4202 OR EQUAL CFCI,
- MOUNT @ 60" A.F.F. 13. TINTED WINDOW FILM APPLIED TO WINDOWS SEALED BY NEW WALL, TYP. COORDINATE COLOR WITH OWNER PRIOR TO INSTALLATION.
- 14. REFER TO 6/A810.1B FOR TYPICAL TREATMENT NEG PRESSURE ROOM 15. WALL MOUNTED TV, PROVIDE FRT BLOCKING IN WALL, COORDINATE
- POWER & DATA 16. CONTRACTOR TO VERIFY WALL TYPE FIRE RATING OF EXISTING WALLS.
- 17. RECESSED FIRE EXTINGUISHER CABINET 18. EXISTING FIRE EXTINGUISHER CABINET POCKET PARTITIONS
- 20. CONTRACTOR TO UPGRADE EXISTING WALL TO SMOKE RATED PER '3Q' WALL TYPE.
- 21. LANDSCAPING, REFER TO CIVIL DRAWINGS. 22. FIELD VERIFY THAT EXISTING WALLS GO TO UNDERSIDE OF DECK AND
- ARE FIRE CAULK, NOTIFY ARCHITECT. 23. FIELD VERIFY RATING OF EXISTING DOOR, NOTIFY ARCHITECT

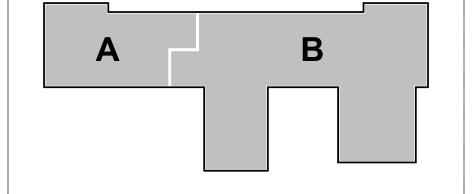
RATED WALL LEGEND

NON-RATED SMOKE RESISTIVE PARTITION TO DECK

1 HOUR SMOKE RESISTIVE PARTITION TO DECK

2 HOUR SMOKE RESISTIVE PARTITION TO DECK

3 HOUR SMOKE RESISTIVE PARTITION TO DECK


4 HOUR SMOKE RESISTIVE PARTITION TO DECK

1 HOUR FIRE RATED PARTITION TO DECK

3 HOUR FIRE RATED PARTITION TO DECK

4 HOUR FIRE RATED PARTITION TO DECK

KEY PLAN

CHANGE DESCRIPTION # DATE 08/19/2020 RENOV. PACKAGE - BULLETIN-01 08/26/2020 CHANGES PER COA PLANS EXAMINER

Grady

GRADY PONCE DE LEON RENOVATION - PACKAGE 1B 341 PONCE DE LEON AVE NE ATLANTA, GA 30308

- OVERALL

1201 W PEACHTREE STREET SUITE 750 ATLANTA, GA 30309

PHONE: (470) 480-7590

MOODY•NOLAN
DRAWING TITLE: **LEVEL 00 PATIO - FLOOR PLAN**

07/31/2020 19184.02 .1B A100

LEGEND:

EXTERIOR WALL AREAS ACCESSED BY WJE

FLOOR PLAN GENERAL NOTES

- A TYPICAL WALL TYPE IS TO BE "3E", U.N.O. REFER TO "AXXX.D SHEETS SERIES.

 ALSO REFER TO ENLARGED PLANS FOR WALL TYPE CALL-OUTS.

 B. ALL DOORS NOT DIMENSIONED ARE TO BE PLACED 4" FROM ADJACENT WALLS
 - TO EDGE OF FRAME.
- C. ALL DIMENSIONS ARE TO FACE OF WALL (UNLESS NOTED OTHERWISE).

 D. SEE STRUCTURAL DRAWINGS FOR LOCATIONS OF ALL STEEL REINFORCING IN WALL & FLOOR CONSTRUCTION.
- SEE FINISH SCHEDULE FOR ADDITIONAL INFORMATION OF LOCATIONS AND TYPES OF FINISH MATERIALS. SEE ELEVATIONS AND STRUCTURAL DRAWINGS FOR LOCATIONS OF EXPANSION & CONTROL JOINTS. CONTRACTOR SHALL PROVIDE ADDITIONAL INTERIOR CONTROL JOINTS AS REQUIRED TO COMPLY WITH MAXIMUM SPACING REQUIREMENTS IN SPECIFICATIONS AND NATIONAL MASONRY
- MECHANICAL & ELECTRICAL EQUIPMENT SHALL BE ON HOUSEKEEPING PADS. PADS ARE TO BE PROVIDED BY THE TRADE SUPPLYING THE EQUIPMENT. SEE MECHANICAL AND ELECTRICAL DRAWINGS FOR ADDITIONAL INFORMATION. WORK TO BE COORDINATED THROUGH THE GENERAL TRADES CONTRACTOR. PADS 4" MIN. 4" THICK W/ W.W.F., UNLESS NOTED OTHERWISE).

① CODED NOTE LEGEND

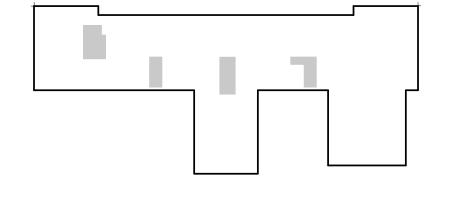
- ALIGN FINISHED SURFACES. SMOKE GUARD SMOKE SEAL AT ELEVATOR DOOR
- ACOUSTIC RATED WALLS WITH STC RATING OF 60
- 4. REFER TO SHEET A812.1B FOR TYPICAL EXAM ROOM LAYOUT 5. NEW HANDRAILS AND GUARDRAILS TO MEET CODE IN EXISTING
- STAIRWELLS, REFER TO DETAILS ON SHEET A407 CARD READER.
- 7. COAT HOOK CH-1 (CFCI) BRADLEY STAINLESS STEEL COAT HOOK MODEL 9114 INSTALL (1) @ 4'-0" AFF & (1) @ 5'-6" AFF
- 8. WALL MOUNTED MONITOR (OFCI) PROVIDE FRT BLOCKING IN WALL, TYP.
 9. SCREEN FENCE REFER TO 2/A404.1B
- 10. VERIFY / PROVIDE ADA CANE DETECTION, REFER TO A800.1B FOR PROJECTING OBJECTS
- 11. WALL MOUNTED PHONE 12. 6-PRONG NAIL HEAD COAT HOOK, SAFECO MODEL #4202 OR EQUAL CFCI,
- MOUNT @ 60" A.F.F. 13. TINTED WINDOW FILM APPLIED TO WINDOWS SEALED BY NEW WALL, TYP.
- COORDINATE COLOR WITH OWNER PRIOR TO INSTALLATION. 14. REFER TO 6/A810.1B FOR TYPICAL TREATMENT NEG PRESSURE ROOM
- 15. WALL MOUNTED TV, PROVIDE FRT BLOCKING IN WALL, COORDINATE POWER & DATA 16. CONTRACTOR TO VERIFY WALL TYPE FIRE RATING OF EXISTING WALLS.
- 17. RECESSED FIRE EXTINGUISHER CABINET 18. EXISTING FIRE EXTINGUISHER CABINET
- 20. CONTRACTOR TO UPGRADE EXISTING WALL TO SMOKE RATED PER '3Q' WALL TYPE.
- 21. LANDSCAPING, REFER TO CIVIL DRAWINGS.22. FIELD VERIFY THAT EXISTING WALLS GO TO UNDERSIDE OF DECK AND
- ARE FIRE CAULK, NOTIFY ARCHITECT. 23. FIELD VERIFY RATING OF EXISTING DOOR, NOTIFY ARCHITECT

RATED WALL LEGEND

NON-RATED SMOKE RESISTIVE PARTITION TO DECK 1 HOUR SMOKE RESISTIVE PARTITION TO DECK

2 HOUR SMOKE RESISTIVE PARTITION TO DECK

3 HOUR SMOKE RESISTIVE PARTITION TO DECK


1 HOUR FIRE RATED PARTITION TO DECK

2 HOUR FIRE RATED PARTITION TO DECK

3 HOUR FIRE RATED PARTITION TO DECK

4 HOUR FIRE RATED PARTITION TO DECK

KEY PLAN

CHANGE DESCRIPTION # DATE 08/19/2020 RENOV. PACKAGE - BULLETIN-01 08/26/2020 CHANGES PER COA PLANS EXAMINER

GRADY PONCE DE LEON Grady CENTER RENOVATION - PACKAGE 1B 341 PONCE DE LEON AVE NE ATLANTA, GA 30308

1201 W PEACHTREE STREET SUITE 750 ATLANTA, GA 30309

PHONE: (470) 480-7590

LEVEL 01 - FLOOR PLAN -**OVERALL**

07/31/2020 19184.02 .1B A101 ISSUED FOR CONSTRUCTION

- A TYPICAL WALL TYPE IS TO BE "3E", U.N.O. REFER TO "AXXX.D SHEETS SERIES.

 ALSO REFER TO ENLARGED PLANS FOR WALL TYPE CALL-OUTS.

 B. ALL DOORS NOT DIMENSIONED ARE TO BE PLACED 4" FROM ADJACENT WALLS
- TO EDGE OF FRAME.
- C. ALL DIMENSIONS ARE TO FACE OF WALL (UNLESS NOTED OTHERWISE).

 D. SEE STRUCTURAL DRAWINGS FOR LOCATIONS OF ALL STEEL REINFORCING IN WALL & FLOOR CONSTRUCTION. SEE FINISH SCHEDULE FOR ADDITIONAL INFORMATION OF LOCATIONS AND
- TYPES OF FINISH MATERIALS. SEE ELEVATIONS AND STRUCTURAL DRAWINGS FOR LOCATIONS OF EXPANSION & CONTROL JOINTS. CONTRACTOR SHALL PROVIDE ADDITIONAL INTERIOR CONTROL JOINTS AS REQUIRED TO COMPLY WITH MAXIMUM SPACING REQUIREMENTS IN SPECIFICATIONS AND NATIONAL MASONRY
- MECHANICAL & ELECTRICAL EQUIPMENT SHALL BE ON HOUSEKEEPING PADS. PADS ARE TO BE PROVIDED BY THE TRADE SUPPLYING THE EQUIPMENT. SEE MECHANICAL AND ELECTRICAL DRAWINGS FOR ADDITIONAL INFORMATION. WORK TO BE COORDINATED THROUGH THE GENERAL TRADES CONTRACTOR. PADS 4" MIN. 4" THICK W/ W.W.F., UNLESS NOTED OTHERWISE).

① CODED NOTE LEGEND

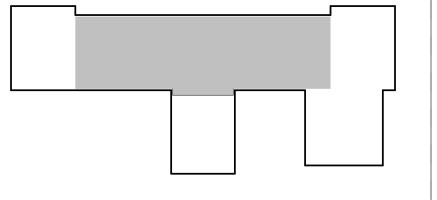
- ALIGN FINISHED SURFACES. SMOKE GUARD SMOKE SEAL AT ELEVATOR DOOR
- ACOUSTIC RATED WALLS WITH STC RATING OF 60
- REFER TO SHEET A812.1B FOR TYPICAL EXAM ROOM LAYOUT 5. NEW HANDRAILS AND GUARDRAILS TO MEET CODE IN EXISTING STAIRWELLS, REFER TO DETAILS ON SHEET A407
- CARD READER. COAT HOOK CH-1 (CFCI) BRADLEY STAINLESS STEEL COAT HOOK MODEL
- 9114 INSTALL (1) @ 4'-0" AFF & (1) @ 5'-6" AFF
- 8. WALL MOUNTED MONITOR (OFCI) PROVIDE FRT BLOCKING IN WALL, TYP.
 9. SCREEN FENCE REFER TO 2/A404.1B
- 10. VERIFY / PROVIDE ADA CANE DETECTION, REFER TO A800.1B FOR
- PROJECTING OBJECTS
- 11. WALL MOUNTED PHONE
- 12. 6-PRONG NAIL HEAD COAT HOOK, SAFECO MODEL #4202 OR EQUAL CFCI, MOUNT @ 60" A.F.F.
- 13. TINTED WINDOW FILM APPLIED TO WINDOWS SEALED BY NEW WALL, TYP. COORDINATE COLOR WITH OWNER PRIOR TO INSTALLATION.
- 14. REFER TO 6/A810.1B FOR TYPICAL TREATMENT NEG PRESSURE ROOM
- 15. WALL MOUNTED TV, PROVIDE FRT BLOCKING IN WALL, COORDINATE POWER & DATA 16. CONTRACTOR TO VERIFY WALL TYPE FIRE RATING OF EXISTING WALLS.
- 17. RECESSED FIRE EXTINGUISHER CABINET 18. EXISTING FIRE EXTINGUISHER CABINET
- 20. CONTRACTOR TO UPGRADE EXISTING WALL TO SMOKE RATED PER '3Q' WALL TYPE.
- 21. LANDSCAPING, REFER TO CIVIL DRAWINGS.
- 22. FIELD VERIFY THAT EXISTING WALLS GO TO UNDERSIDE OF DECK AND ARE FIRE CAULK, NOTIFY ARCHITECT.
- 23. FIELD VERIFY RATING OF EXISTING DOOR, NOTIFY ARCHITECT

RATED WALL LEGEND

NON-RATED SMOKE RESISTIVE PARTITION TO DECK

1 HOUR SMOKE RESISTIVE PARTITION TO DECK

2 HOUR SMOKE RESISTIVE PARTITION TO DECK 3 HOUR SMOKE RESISTIVE PARTITION TO DECK


4 HOUR SMOKE RESISTIVE PARTITION TO DECK

1 HOUR FIRE RATED PARTITION TO DECK

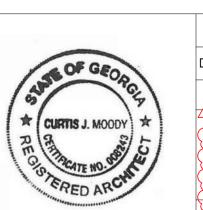
2 HOUR FIRE RATED PARTITION TO DECK 3 HOUR FIRE RATED PARTITION TO DECK

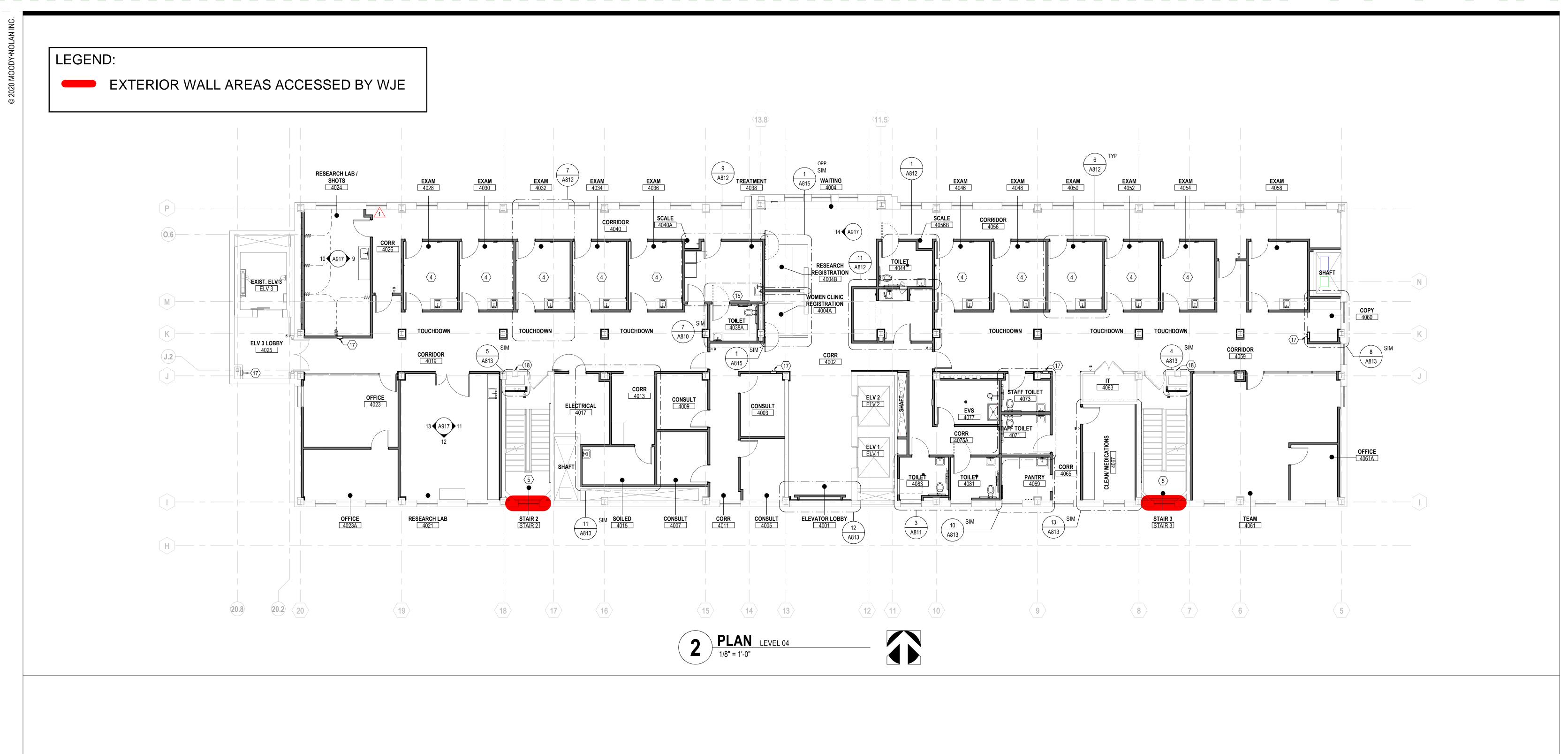
4 HOUR FIRE RATED PARTITION TO DECK

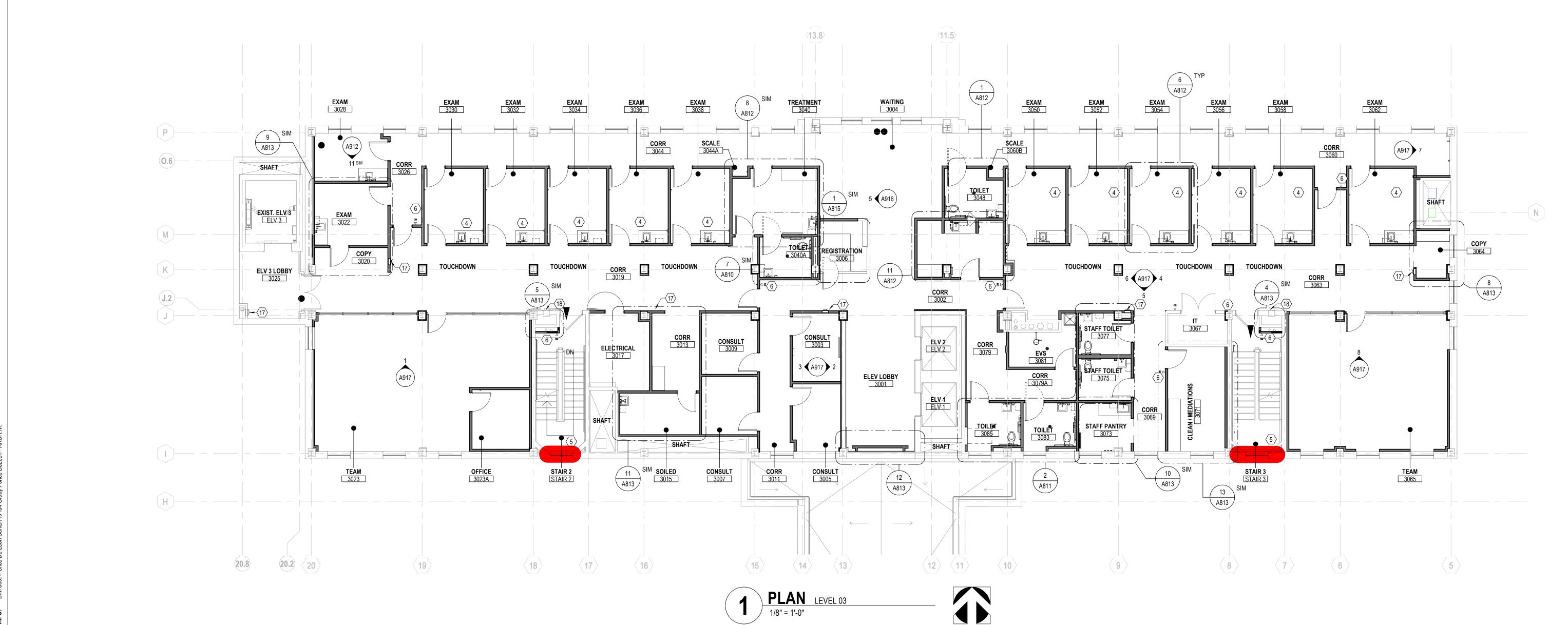
KEY PLAN

CHANGE DESCRIPTION 08/19/2020 RENOV. PACKAGE - BULLETIN-01

08/26/2020 CHANGES PER COA PLANS EXAMINER


GRADY PONCE DE LEON Grady CENTER RENOVATION - PACKAGE 1B 341 PONCE DE LEON AVE NE ATLANTA, GA 30308


1201 W PEACHTREE STREET SUITE 750 ATLANTA, GA 30309


PHONE: (470) 480-7590 MOODY•NOLAN

LEVEL 02 - FLOOR PLAN

07/31/2020 19184.02 .1B A102

- A TYPICAL WALL TYPE IS TO BE "3E", U.N.O. REFER TO "AXXX.D SHEETS SERIES.

 ALSO REFER TO ENLARGED PLANS FOR WALL TYPE CALL-OUTS.

 B. ALL DOORS NOT DIMENSIONED ARE TO BE PLACED 4" FROM ADJACENT WALLS
- TO EDGE OF FRAME.
- C. ALL DIMENSIONS ARE TO FACE OF WALL (UNLESS NOTED OTHERWISE).

 D. SEE STRUCTURAL DRAWINGS FOR LOCATIONS OF ALL STEEL REINFORCING IN
- WALL & FLOOR CONSTRUCTION. SEE FINISH SCHEDULE FOR ADDITIONAL INFORMATION OF LOCATIONS AND TYPES OF FINISH MATERIALS.
- SEE ELEVATIONS AND STRUCTURAL DRAWINGS FOR LOCATIONS OF EXPANSION & CONTROL JOINTS. CONTRACTOR SHALL PROVIDE ADDITIONAL INTERIOR CONTROL JOINTS AS REQUIRED TO COMPLY WITH MAXIMUM SPACING REQUIREMENTS IN SPECIFICATIONS AND NATIONAL MASONRY
- MECHANICAL & ELECTRICAL EQUIPMENT SHALL BE ON HOUSEKEEPING PADS. PADS ARE TO BE PROVIDED BY THE TRADE SUPPLYING THE EQUIPMENT. SEE MECHANICAL AND ELECTRICAL DRAWINGS FOR ADDITIONAL INFORMATION. WORK TO BE COORDINATED THROUGH THE GENERAL TRADES CONTRACTOR. PADS 4" MIN. 4" THICK W/ W.W.F., UNLESS NOTED OTHERWISE).

① CODED NOTE LEGEND

- 1. ALIGN FINISHED SURFACES. SMOKE GUARD SMOKE SEAL AT ELEVATOR DOOR
- ACOUSTIC RATED WALLS WITH STC RATING OF 60 REFER TO SHEET A812.1B FOR TYPICAL EXAM ROOM LAYOUT
- NEW HANDRAILS AND GUARDRAILS TO MEET CODE IN EXISTING STAIRWELLS, REFER TO DETAILS ON SHEET A407
- CARD READER. COAT HOOK CH-1 (CFCI) BRADLEY STAINLESS STEEL COAT HOOK MODEL 9114 INSTALL (1) @ 4'-0" AFF & (1) @ 5'-6" AFF
- 8. WALL MOUNTED MONITOR (OFCI) PROVIDE FRT BLOCKING IN WALL, TYP.
 9. SCREEN FENCE REFER TO 2/A404.1B
- 10. VERIFY / PROVIDE ADA CANE DETECTION, REFER TO A800.1B FOR
- PROJECTING OBJECTS
- 1. WALL MOUNTED PHONE
- 12. 6-PRONG NAIL HEAD COAT HOOK, SAFECO MODEL #4202 OR EQUAL CFCI, MOUNT @ 60" A.F.F.
- 13. TINTED WINDOW FILM APPLIED TO WINDOWS SEALED BY NEW WALL, TYP.
- COORDINATE COLOR WITH OWNER PRIOR TO INSTALLATION. 14. REFER TO 6/A810.1B FOR TYPICAL TREATMENT NEG PRESSURE ROOM
- 15. WALL MOUNTED TV, PROVIDE FRT BLOCKING IN WALL, COORDINATE
- POWER & DATA 16. CONTRACTOR TO VERIFY WALL TYPE FIRE RATING OF EXISTING WALLS.
- 18. EXISTING FIRE EXTINGUISHER CABINET POCKET PARTITIONS

17. RECESSED FIRE EXTINGUISHER CABINET

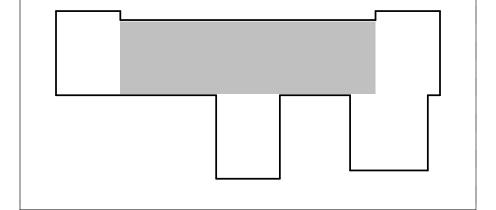
- 20. CONTRACTOR TO UPGRADE EXISTING WALL TO SMOKE RATED PER '3Q' WALL TYPE.
- 21. LANDSCAPING, REFER TO CIVIL DRAWINGS.22. FIELD VERIFY THAT EXISTING WALLS GO TO UNDERSIDE OF DECK AND
- ARE FIRE CAULK, NOTIFY ARCHITECT.
- 23. FIELD VERIFY RATING OF EXISTING DOOR, NOTIFY ARCHITECT

RATED WALL LEGEND

NON-RATED SMOKE RESISTIVE PARTITION TO DECK

1 HOUR SMOKE RESISTIVE PARTITION TO DECK

3 HOUR SMOKE RESISTIVE PARTITION TO DECK


4 HOUR SMOKE RESISTIVE PARTITION TO DECK

1 HOUR FIRE RATED PARTITION TO DECK

3 HOUR FIRE RATED PARTITION TO DECK

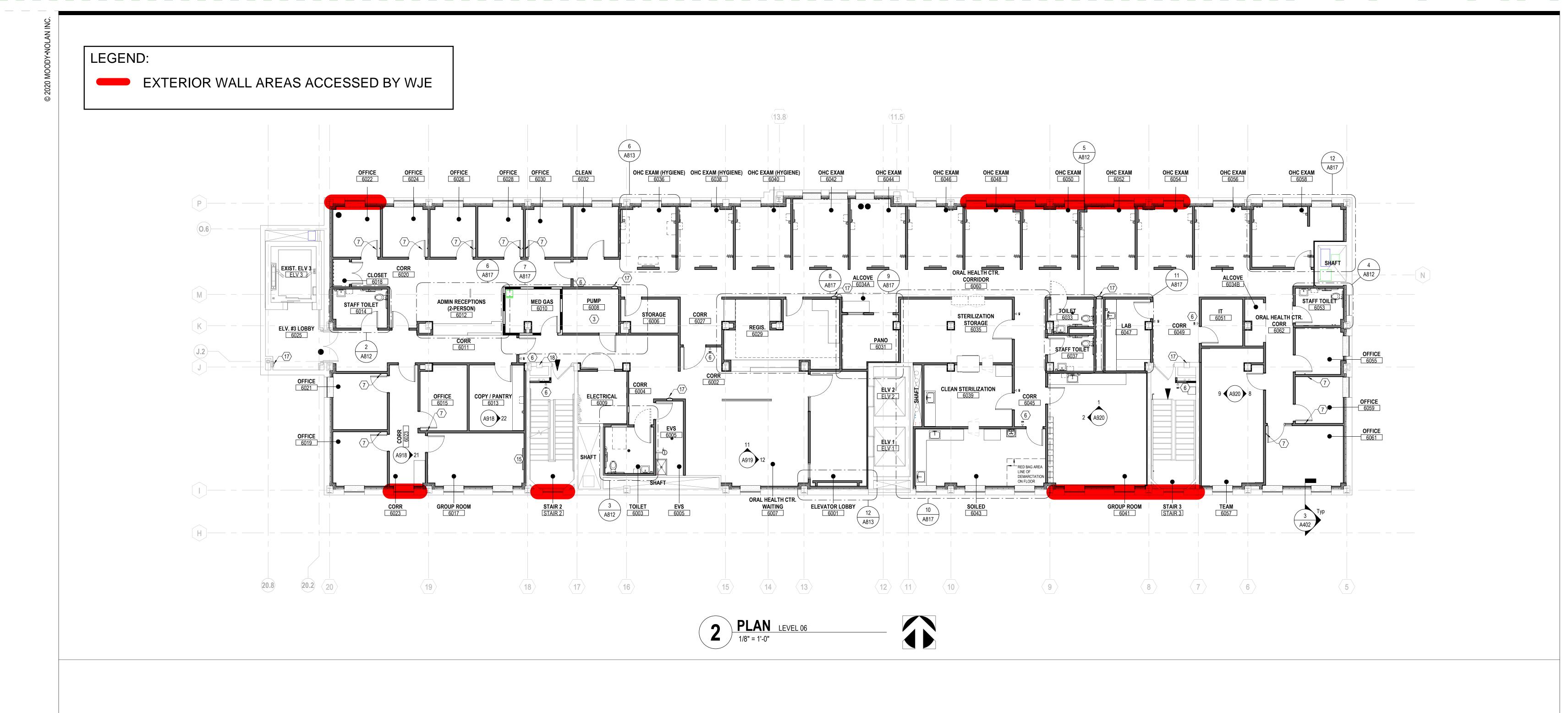
4 HOUR FIRE RATED PARTITION TO DECK

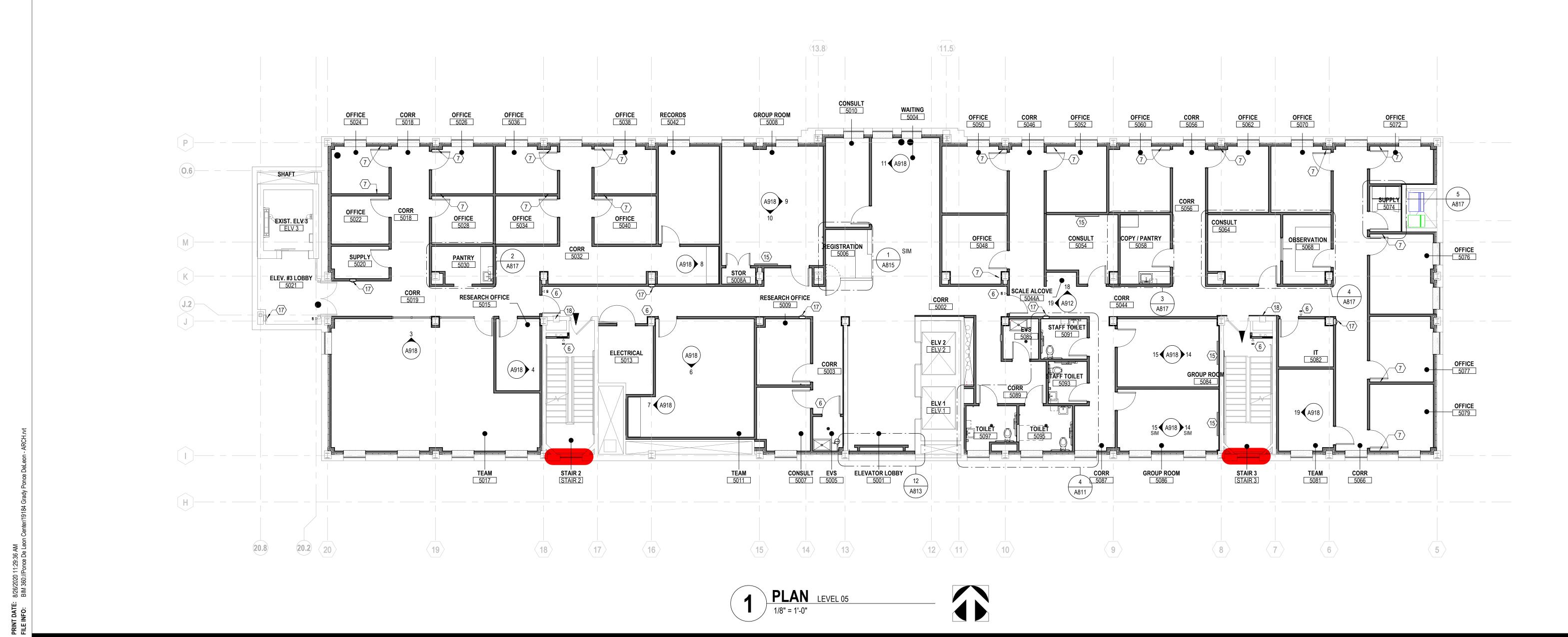
KEY PLAN

CHANGE DESCRIPTION 08/19/2020 RENOV. PACKAGE - BULLETIN-01 08/26/2020 CHANGES PER COA PLANS EXAMINER

GRADY PONCE DE LEON CENTER
RENOVATION - PACKAGE 1B
341 PONCE DE LEON AVE NE
ATLANTA, GA 30308

1201 W PEACHTREE STREET SUITE 750 ATLANTA, GA 30309


MOODY•NOLAN


PHONE: (470) 480-7590

LEVEL 03 & 04 - FLOOR PLAN

07/31/2020 19184.02 .1B A103

- A. TYPICAL WALL TYPE IS TO BE "3E", U.N.O. REFER TO "AXXX.<u>D</u> SHEETS SERIES.

 1 ALSO REFER TO ENLARGED PLANS FOR WALL TYPE CALL-OUTS.
- B. ALL DOORS NOT DIMENSIONED ARE TO BE PLACED 4" FROM ADJACENT WALLS TO EDGE OF FRAME.
- C. ALL DIMENSIONS ARE TO FACE OF WALL (UNLESS NOTED OTHERWISE).
 D. SEE STRUCTURAL DRAWINGS FOR LOCATIONS OF ALL STEEL REINFORCING IN
- WALL & FLOOR CONSTRUCTION. SEE FINISH SCHEDULE FOR ADDITIONAL INFORMATION OF LOCATIONS AND TYPES OF FINISH MATERIALS. SEE ELEVATIONS AND STRUCTURAL DRAWINGS FOR LOCATIONS OF

MECHANICAL AND ELECTRICAL DRAWINGS FOR ADDITIONAL INFORMATION. WORK TO BE COORDINATED THROUGH THE GENERAL TRADES CONTRACTOR.

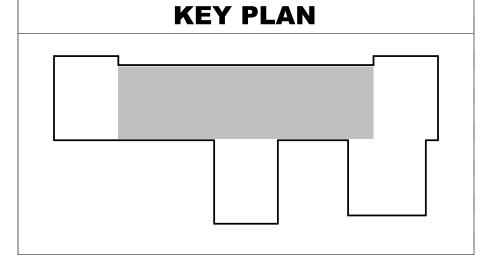
EXPANSION & CONTROL JOINTS. CONTRACTOR SHALL PROVIDE ADDITIONAL INTERIOR CONTROL JOINTS AS REQUIRED TO COMPLY WITH MAXIMUM SPACING REQUIREMENTS IN SPECIFICATIONS AND NATIONAL MASONRY MECHANICAL & ELECTRICAL EQUIPMENT SHALL BE ON HOUSEKEEPING PADS. PADS ARE TO BE PROVIDED BY THE TRADE SUPPLYING THE EQUIPMENT. SEE

CODED NOTE LEGEND

PADS 4" MIN. 4" THICK W/ W.W.F., UNLESS NOTED OTHERWISE).

- ALIGN FINISHED SURFACES. SMOKE GUARD SMOKE SEAL AT ELEVATOR DOOR
- ACOUSTIC RATED WALLS WITH STC RATING OF 60 REFER TO SHEET A812.1B FOR TYPICAL EXAM ROOM LAYOUT
- 5. NEW HANDRAILS AND GUARDRAILS TO MEET CODE IN EXISTING
- STAIRWELLS, REFER TO DETAILS ON SHEET A407 CARD READER.
- COAT HOOK CH-1 (CFCI) BRADLEY STAINLESS STEEL COAT HOOK MODEL 9114 INSTALL (1) @ 4'-0" AFF & (1) @ 5'-6" AFF 8. WALL MOUNTED MONITOR (OFCI) PROVIDE FRT BLOCKING IN WALL, TYP.
- 9. SCREEN FENCE REFER TO 2/A404.1B
- 10. VERIFY / PROVIDE ADA CANE DETECTION, REFER TO A800.1B FOR PROJECTING OBJECTS
- I. WALL MOUNTED PHONE 12. 6-PRONG NAIL HEAD COAT HOOK, SAFECO MODEL #4202 OR EQUAL CFCI,
- MOUNT @ 60" A.F.F. 13. TINTED WINDOW FILM APPLIED TO WINDOWS SEALED BY NEW WALL, TYP. COORDINATE COLOR WITH OWNER PRIOR TO INSTALLATION.
- 14. REFER TO 6/A810.1B FOR TYPICAL TREATMENT NEG PRESSURE ROOM
- 15. WALL MOUNTED TV, PROVIDE FRT BLOCKING IN WALL, COORDINATE POWER & DATA
- 16. CONTRACTOR TO VERIFY WALL TYPE FIRE RATING OF EXISTING WALLS. 17. RECESSED FIRE EXTINGUISHER CABINET
- 18. EXISTING FIRE EXTINGUISHER CABINET 19. POCKET PARTITIONS
- 20. CONTRACTOR TO UPGRADE EXISTING WALL TO SMOKE RATED PER '3Q' WALL TYPE.
- 21. LANDSCAPING, REFER TO CIVIL DRAWINGS. 22. FIELD VERIFY THAT EXISTING WALLS GO TO UNDERSIDE OF DECK AND
- ARE FIRE CAULK, NOTIFY ARCHITECT. 23. FIELD VERIFY RATING OF EXISTING DOOR, NOTIFY ARCHITECT

RATED WALL LEGEND


NON-RATED SMOKE RESISTIVE PARTITION TO DECK 1 HOUR SMOKE RESISTIVE PARTITION TO DECK

2 HOUR SMOKE RESISTIVE PARTITION TO DECK 3 HOUR SMOKE RESISTIVE PARTITION TO DECK

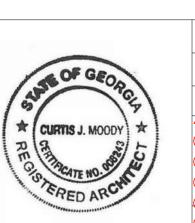
4 HOUR SMOKE RESISTIVE PARTITION TO DECK 1 HOUR FIRE RATED PARTITION TO DECK

2 HOUR FIRE RATED PARTITION TO DECK

3 HOUR FIRE RATED PARTITION TO DECK 4 HOUR FIRE RATED PARTITION TO DECK

CHANGE DESCRIPTION 08/19/2020 RENOV. PACKAGE - BULLETIN-01 08/26/2020 CHANGES PER COA PLANS EXAMINER

GRADY PONCE DE LEON , CENTER RENOVATION - PACKAGE 1B 341 PONCE DE LEON AVE NE ATLANTA, GA 30308



1201 W PEACHTREE STREET SUITE 750 ATLANTA, GA 30309

PHONE: (470) 480-7590

MOODY•NOLAN

LEVEL 05 & 06 - FLOOR PLAN

07/31/2020 19184.02 .1B A104